Developing for the Oracle Internet Platform

DATABASE ACCESS FROM JAVASERVER PAGES

Julie Basu, Oracle Corporation

1. INTRODUCTION

This paper examines the issues in accessing the Oracle database from JavaServer Pages, also known as JSPs!. JSP is a
recent language specification developed by Sun Microsystems (cooperatively with other software companies including Oracle)
to allow the generation of dynamic content in the HIML pages of a web application. For example, a JSP may perform a query
against the database and report the results as an HTML table. The JSP translator converts JSP files to servlefs, which can be
executed on a webserver that supports a servlet runner. Once deployed, a JSP can be invoked from a browser via an http
URL to return the dynamically generated page.

The industry-leading Oracle8: database products provide integrated and comprehensive Java support|[1], including
support for execution of servlets and JSPs. JSPs can be run on the Oracle Application Server, on WebDB, and on upcoming
releases of Oracle Lite and the JServer. Access to object-relational data in SQL tables is provided through JDBC and SQLJ,
which are standard frameworks for database connectivity in Java. Our focus in this paper is on accessing the database from a
JSP using JDBC and SQLJ, with emphasis on resource management and formatting of query results.

The paper is organized as follows. In Section 2 we give an overview of a web application and the JSP execution
model, and illustrate the steps in writing basic JSPs. Section 3 provides a brief review of JDBC and SQLJ. In Section 4 we
discuss the programming and performance issues for JSPs that interact with the database. Detailed code samples are used to
explain the various strategies, including the usage of JavaBeans. Section 5 deals with formatting of SQL query results and
explains how XML output can be dynamically generated in a JSP using the Oracle XML-SQL and related utilities. We
conclude with a technology preview of Oracle’s JSP extensions, and of the embedded web server hosted by Oracle JServer
that will allow servlets and JSPs to be executed on the Java Virtual Machine running inside the database.

2. CONCEPTS AND TERMS

In this section we present an overview of the basic concepts and terms that will be used in the paper.

The Internet has spawned the concept of web applications with browser-based interfaces. These application employ
simple point-and-click graphical user interfaces to successfully hide much of their complexity. However, their goal is not just
ease of use but wide and uniform accessibility across different types of machines and networked geographical areas. New and
innovative technology has prompted the rapid adoption of this elegant yet powerful class of applications. Java plays an
important role in this area — it is the language of choice for developing web-based applications. Likewise, HTML (Hyper Text
Markup Language) is the standard annotation scheme for presentation of web content to the user. JSPs are right in this
programming space — they allow web output to be generated on the fly using HTML with Java scripting. They are based on
the servlet programming model [4]. Before we look at JSPs, let us delve a little more into what constitutes a web application.

2.1 WEB APPLICATION ARCHITECTURE

The central entity in web applications is the web server. The basic idea of a web server is quite simple — it
understands the HT'TP request-response protocol and returns pages that are requested by the user through an HI'TP URL.
Around this simple concept have grown powerful Java-based technologies such as applets, servlets, and JSPs. Applets exploit
the write-once-run-anywhere design philosophy of the Java language, downloading code from the web server into the local
browser for execution and presentation. In contrast, servlets and JSP are executed by the web server upon invocation
through a URL. The generated results are returned to the browser as part of the response to the HI'TP request. Servlets

L JavaServer Pages are not to be confused with Java Stored Procedures, which are oflen referred to with the same JSP acronym.

Paper 1097

Developing for the Oracle Internet Platform

and JSPs are relatively new technologies but they have gained quick popularity due to their flexible yet powerful programming
model.

In addition to static files with predetermined content, a web application may contain a mixture of dynamic pages
generated using servlets, JSPs that are compiled to servlets before execution, other types of dynamic pages such as DHTML,
plus stylesheets for presentation, and supporting Java libraries. Figure 1 shows the general setup of a web application.

/ Web Server

Down-
loadable

HTTP reguest
—

Oracle

database

Browser

-
HTTP response

Figurel. The Architecture of a Web Application

2.2 WHAT IS A JAVASERVER PAGE(JSP) ?

The JSP programming model allows web content to be generated dynamically during program execution through Java
scriptlets, declarations, and expressions intetleaved with the static content in a HI'ML page [1]. A scriptlet is a block of Java
code that is run as part of the servlet that is generated from JSP translation. Compared to servlets, JSPs provide a convenient
shorthand, making them simpler and easier to author. Their main intent is to support clean separation of content generation
and presentation logic. In particular, the integration of reusable modular components such as JavaBeans is emphasized.

As we shall see later in this paper, emerging standards like XML and XSL [9] ate usable within the JSP framework.
In contrast to competing technology such as the Active Server Pages from Microsoft Corporation, the JSP model is based
almost entirely on Java. The specification does not rule out the possibility of other scripting languages but they are all
required to support manipulation of Java objects, invocation of methods on them, and handling of Java exceptions. We will
see an example of such an extension later in our paper to permit the use of SQLJ in scriptlets.

Without further ado, let us look at some examples of JSP code. We will start with a very basic page and move on to
more advanced usage.

2.2.1 A SIMPLE [SP

Let us write a very simple JSP named Wl cone. j sp to print out a greeting and the current date.

<HTM_>
<HEAD> <TI TLE> The Wl cone JSP </ TITLE> </ HEAD>
<BODY BGCOLOR="white">

<H3> Welcome! </H3>

<P> Today is <% new java.util.Date() % . Have a nice day! :-) </P>
</BODY>

</HTML>

Figure 2. A Simple |avaServer Page Welcome.jsp

The first three lines of the Welcome JSP are usual HTML code that define the title and body color of the page.
Following the welcome greeting is a new paragraph that prints the date and current time using a Java expression within the
<% and % tags. This expression creates a new instance of the j ava. util . Dat e type which is set to the current time

Paper 1097

Developing for the Oracle Internet Platform

by the Java runtime when the page executes. The result of this expression is coerced to a St ri ng and returned tothe
browser as part of the HI'TP response. Below is the result of invoking the Welcome JSP from the Netscape browser:

% The Welcome JSP - Netscape

File Edit “iew Go Communicator Help
j wfv Bookmark s J‘ Location: Ihttp:HdlsunEES:SDSDMeIcome. [j @'What's Related m
Welcome! j
Today is Tue Oct 05 12:10:35 PDT 1999. Have a nice day! :-) =
@ == |Document: Done

Figure3. Output of running the Welcome |SP

2.2.2 USING HTTP REQUEST PARAMETERS

It is often the case that a dynamic page needs to use a parameter that is entered interactively by the user on the screen.
This data can be passed to the JSP as part of the HTTP request. Let us now write a JSP Wel comeUser . | Sp that prints out
a greeting for such a user name parameter in the HI'TP request. Figure 4 shows what such a JSP could look like.

In this JSP we are using an HTML form to enter the name of the user. When the “Submit name” button is clicked,
the form invokes the GET method of the same JSP. The input string (if any) is assigned to a parameter named US€r and
passed to the JSP via the HT'TP request object. This objectis named r equest and is implicitly available in a JSP. It
provides a method get Par anet er (Stri ng paranNane) for retrieving parameter values by their name. The
WelcomeUser JSP calls this method to read the value of the parameter USer , and if the returned value is not null it prints out
a welcome message with the specific user name.

Figure 5(a) shows the result of invoking this JSP with no parameters — it prints a welcome message without a user
name since none was supplied in the HT'TP request. If now a value ‘Julie’ is entered in the input field and the ‘Submit name’
button is clicked, the WelcomeUser JSP returns the output shown in Figure 5(b). Notice in Figure 5(b) that the URL includes
the value of the name parameter that was entered in the HTML form. Since the method associated with the form is GET,
the HT'TP URL is augmented with ? followed by key-value pairs representing the form fields, in this case just US€r .

<HTM_>
<HEAD> <TI TLE> The Wel coneUser JSP </ TITLE> </ HEAD>

<BODY BGCOLOR="white">

<% String user = request . get Paraneter ("user"); %>
<H3> Welcome <%= (user == null)? " : user %> ! </H3>
Enter name:

<FORM METHOD=get>

<I NPUT TYPE="text" NAME="user" Sl|ZE=15>

<INPUT TYPE="submit" VALUE="Submit name");

</FORM>

</BODY>

</HTML>

Fig 4. The WelcomeUser |SP uses a parameter in the HTTP request object

Paper 1097

Developing for the Oracle Internet Platform

S Tha Walcomallpe F5I° - Hekicsps
Fie [Vs Ga [orramcsw §s&p

(g) First invoked T ol Wockmaits) Locaton Jin T ki L ke a7 EE_J'“HHHH ﬂ
T

without parameters
Welvame !

Enter mevmes

== Ermimmed Thme P e e | 5:

Fe Tha 'walcrmeldos F51° - Heticspss

Fle B e 0 Cowamcis Hsp

(b) Next hit dffﬂ' Tk Wocireiy Lo 4 rr. e o TRtk | ot b et jf;'wr-'hﬂnu-i
after submitting
the name ‘[ulie’ Welcome Julie 1

throush the form

e msime

[[asmaneme |

o e Coumend Dvres e R T Y

Figure 5. Output of WelcomeUser |SP

2.2.3 USING JAVABEANS AND LIFECYCLE SCOPING

JSP supports the use of the <j Sp: usebean> tag to invoke a modular program entity known as a JavaBean.
JavaBeans function as reusable elements of component programming [6]. A JavaBean is a Java program that conforms to certain
design rules with well-defined semantics that permit dynamic discovery and manipulation of the bean. For example, a bean
can have properties with accessor methods. By default, accessor methods can be associated with their respective properties
simply by their naming convention — accessors for a property i Nt X are named get X() and set X(i nt newX). Such
implicit rules as well as the facility for explicitly providing information about a bean through a Beanl nf o class support well-
defined behavior of the bean. This information can be effectively used by environments in which the bean is embedded.

In the Java file below we have defined a very simple bean called NanmeBean with a single String-valued property
newNane and its get and set accessor methods that conform to the implicit naming rules. The bean lives in a Java
package called nybeans.

package nybeans;

public class NaneBean {
String newNanme="";
public void NaneBean() { }

public String get NewName() {
return newNane;

}
public void set NewNarme(String newNane) {
this. newNanme = newNane;

}
}
The JSP framework supportts easy invocation of such a bean through the <j Sp: usebean id=... scope=... />
tag. This tag specifies an identifier for the bean instance and optionally its /fetime, i.e., the duration of its availability, through

an attribute named SCOPe . This attribute can have one of four different values: page, request , session , or
application , with the default value being page . If the scope is page, then an instance of the bean is created when the

Paper 1097

Developing for the Oracle Internet Platform

usebean command is encountered in the page and its reference is associated with the identifier given in the i d attribute.
Reference to the bean is no longer possible once execution of the page body has been completed. Re-invoking the page will
create and associate with the identifier an entirely new instance of the bean. Likewise, the S€SSi 0N scope specifies that the
bean is associated with the HT'TP session that causes the JSP page to be invoked, and it is available for use through the given
identifier until the HTTP session is explicitly terminated or implicitly times out.

Using JavaBeans in a JSP allows clear separation of Java logic that generates dynamic content and its presentation.
Let us see how the NanmeBean we defined above can be used in a JSP. The intent of the example is to illustrate not only the
use of modular beans but also the different scoping options for their lifetime. Hence we have two usebean tags that use
NanmeBean in two different scopes, namely page and Sessi on. Following the two usebean commands are
<j sp: set proper t y> tags that set the properties of the specified beans from the HI'TP request parameters. The
property="*" clause implies that the properties of the bean will be set to the HT'TP request patameter values by
matching their names. In our case, the HTML form field is called NeWName which is a parameter in the HTTP GET
request, and it is no coincidence that its name matches the property neEwNameof NameBean

<% page i nport="nybeans. NaneBean" %

<j sp: useBean i d="pageBean" cl ass="nybeans. NaneBean" scope="page" />
<j sp: set Property nane="pageBean" property="*" />

<j sp: useBean i d="sessi onBean" cl ass="nybeans. NaneBean" scope="session" />
<j sp: set Property nane="sessi onBean" property="*" />

<HTM_>
<HEAD> <TI| TLE> The UseBean JSP </ Tl TLE> </ HEAD>
<BODY BGCOLOR="white”>

<H3> Welcome to the UseBean JSP </H3>
<P>Page bean:
<% if (pageBean. get NewNane() .equals("™)) { %>
| don't know you.
<% } else { %>
Hello <%= pageBean. get NewNare() %>!
<% } %>

<P>Session bean:
<% if (sessi onBean. get NewNane() .equals(™)) { %>
| don't know you either.
<% } else {
if ((request.getParameter("newName") == null) ||
(request.getParameter("newName").equals("))) { %>
Aha, | remember you.
<% }%>
You are <%= sessi onBean. get NewNane() %>.
<% } %>

<P>May we have your name?

<FORM METHOD="get">

<I NPUT TYPE="TEXT" name="newName” size=20>
<I NPUT TYPE="SUBMIT” VALUE="Submit name">
</FORM>

</BODY>

</HTML>

Figure 6. The UseBean |SP with page-scoped and session-scoped beans

Let us now examine what happens when this JSP page is invoked. The behavior is shown in Figure 7. In case (a) the
JSP is invoked without any arguments. The usebean tags cause instances of both beans to be created. However, there is no

Paper 1097

Developing for the Oracle Internet Platform

matching HT'TP parameter for their NeWNaITe property and hence calls to their get NewNanme() method returns the initial
value of the empty string. Hence both beans are unaware of the name of current user. Next, suppose that I enter the name
Julie through the HIML form and submit the request. The properties of both the page bean (but a different instance!) and
the same session bean are set from this input value, and both beans output a greeting message with the supplied user name.
In case (c) I hit the same page again with no arguments after a few seconds but within the limit of session timeout (a
configuration parameter of the webserver). The new instance of the page-scoped bean is unaware of the user name but the
note that the session-scoped bean has retained the setting of its newIName property from the previous page bit!

(a) First invoked
with no parameters

(b) After entering

user name ‘[ulie’

(c) Again invoked
with no parameters
within the same

HTTP session.

The UseBean J5P - Hetscape

e Edit Yiew Go Communicatar Help

j B what's Related m

Welcome to the UseBean JSP

Page bean: [don't know you.
Session bean: [don't know you either.

May we have your name?

I Submit name |

i (== |

|Document: Done

NLEL

0 1k sl aan J51

fin & Yew o Cowwmcss Heip

Hatoz aps

ol Bochwarks b Loestom foip < deunb BEG emarpion e Uselinan iz et wsesbuls

o

Weleome to the UseBean J5F
Page bean: Hello Jule |

Bukslon haas: Voo s Jike

My We have yoils' fadie?

! _Sibwi reme |

e

Cerumsnd Cora

Lith ich et (R 48

i L

Tha Usellpan JS1° - Melscaps

[l B4 Yo o [owmrcsto Hep

..,. " Bookmata) Locelon I'i1.- gty) B w e i L ed wan ap

=] i vratuneued [

"1 I £

Welcomee to the Usellean J5P
Paege beeame | don't Bmarw yan
Bickulom bisin: Aha | resenkess vl Tou s ks

My we Matss FiiE aadre?

I Chml reme

e

- O Y

Figure 7. Output of page-scoped and session-scoped beans in the UseBean |SP

Paper 1097

Developing for the Oracle Internet Platform

3. DATABASE ACCESS SCHEMES IN JAVA

In this section we will provide a brief overview of the database access mechanisms in Java. Two different
frameworks, JDBC and SQLJ, are available for connecting to database in a Java program.

3.1.1 JDBC

The JDBC specification from Sun Microsystems defines a set of interfaces for SQL-based database access from Java.
JDBC is a call-level application program interface (API), which means that SQL statements are executed on a database by calling
methods in the JDBC library from the Java program. Database vendors can provide different implementations of the JDBC
APIs for their databases. For example, Oracle provides three JDBC drivers [3], namely the JDBC-OCI driver which uses the
client-side OCI installation to interact with the Oracle database, the JDBC thin driver that is written purely in Java and
communicates directly with the database using Java sockets over TCP/IP, and a JDBC setver-side driver packaged as part of
the Oracle 87 JServer for executing Java stored procedures inside the database. Which JDBC driver is appropriate for the
application depends on the deployment requirements. The important point is that all JDBC drivers support the same
standard set of interfaces, thereby promoting portability across different JDBC drivers as well as databases.

The JDBC programming model is based on ODBC. Interfaces defined in the j ava. sql package represent database
connections (j ava. sql . Connect i on), statement execution handles (j ava. sql . St at enent), and query result sets
(j ava. sql . Resul t Set), among others. Resultsets provide row-by-row access to the results returned by a SQL query. We
will not provide details of JDBC programming here; it is assumed that you are familiar with these basic JDBC concepts.

3.1.250L)

SQLJ is a recent ANSI standard for embedding static SQL statements directly in Java code [5]. The mixed code is
converted to Java by the SQLJ translator, and can be executed on a database using the SQLJ runtime library and an undetlying
JDBC driver. Oracle is a major participant in the design and development of SQLJ, and supports SQL]J wherever JDBC runs.

SQL statements in SQLJ are szatz; that is, they must be known at program time and cannot change as the program
executes. Data values passed to SQL operations (i.e., the values of bind parameters) can be determined at runtime but the SQL
operation is known a priori. In contrast, the JDBC API is fully dynamic — the SQL statement itself can be formulated “on the
fly”. Most SQL operations in a typical database application are static. SQLJ provides a simpler model for static SQL
statements compared to JDBC, and provides a higher-level interface by automatically managing JDBC statement handles.
Additionally, the SQLJ translator can check the SQL statements against a database for syntax and semantic errors. This
checking is performed at compile-time unlike just at runtime as in JDBC, and it is independent of the actual flow of program
logic. Compared to JDBC, SQLJ programs are therefore more robust, much quicker to write and easier to maintain.

A SQLJ source file uses the short-hand #sQl notation to embed SQL statements inline. For example, to insert a
new employee in our database we can directly write:

#sql [ctx]{ INSERT INTO enp (enane, sal) VALUES (:newknp, :(getSal (neweEnp))};

The Java variable ct X in the above statement represents the database connection on which the SQL statement is to
be executed. Within the curly braces is the SQL command, and the Java arguments (called host expressions) for the operation
are embedded directly in their appropriate positions. Execution of this statement automatically evaluates the host expressions,
acquires a JDBC statement handle on the given database connection, binds the parameters, and releases the statement after
execution is complete. Contrast the compact syntax to the sequence of JDBC calls that are required to set up the statement
handle and bind parameter values.

Querying the database requires the use of SQLJ #ferators, which are strongly-typed equivalents of JDBC result sets.
The strong typing aids compile-time checking of SQL queries, and is defined in terms of the types and optionally the names
of the SQL columns fetched. Further details about SQLJ programming can be obtained from [5].

Usage Note:

JDBC or SQLJ? An important point is that SQLJ and JDBC are complementary approaches. If your application has
some static SQL statements and some dynamic ones, you can mix-and-match SQLJ and JDBC in a single soutrce file as
necessary. SQLJ is designed to inter-operate nicely with JDBC; for example, a single database connection can be easily shared
across the two programming models. Likewise, JDBC resultsets can be converted to SQLJ iterators and vice-versa.

Paper 1097

Developing for the Oracle Internet Platform

4. QUERYING THE DATABASE FROM A JSP

In this section we illustrate through detailed code examples how to query a database using JDBC and SQLJ in a JSP.
Other SQL operations such as insert and update are permitted of course, but our focus in this paper is on fetching and
formatting data from SQL tables.

4.1 USING SQLJ

Since JDBC is a set of Java interfaces, its use within a JSP scriptlet is directly supported. Using SQLJ in JSP scriptlets
is a convenient Oracle extension to this model. The JSP page directive has a language attribute which can be set to SQl j , as
in the JSP shown in Figure 8 below. Equivalently, the JSP file may be given the . sql j sp extension.

<%@ page | anguage="sqlj”
i mport="sqlj.runtine.ref.Defaul tContext,oracle.sqlj.runtine.O acle" %
<HTM_>
<HEAD> <TI TLE> The SQLJQuery JSP </ Tl TLE> </ HEAD>
<BODY BGCOLOR="white">

<% String empno = request . get Par anet er (" enpno") ;
if (empno != null) { %>
<H3> Employee # <%=empno %> Details: </H3>

<%= runQuery(enpno) %>
<HR>

<%} %>

Enter an employee number:

<FORM METHOD="get">

<INPUT TYPE="text" NAME="empno" SIZE=10>

<INPUT TYPE="submit" VALUE="Ask Oracle");

</[FORM>

</BODY>

</HTML>

<%! private String runQuery(String empno) throws java.sql.SQLException {
DefaultContext dctx = null;
String ename = null; double sal = 0.0; String hireDate = null;
StringBuffer sb = new StringBuffer();

try {
dctx = Oracl e. get Connection("jdbc: oracle:oci 8 @, "scott", "tiger");
#sql [dctx] { SELECT enane, sal, TO CHAR(hiredate, ' DD MON- YYYY')
I NTO : enane, :sal, :hireDate

FROM scott. enp WHERE UPPER(enpno) = UPPER(: enpno)

L
sb.append("<BLOCKQUOTE><BIG><PRE>\n");
sb.append("Name : "+ ename + "\n");
sb.append("Salary : "+ sal + "\n");
sh.append("Date hired : " + hireDate);
sh.append("</PRE></BIG></BLOCKQUOTE>");

} catch (java.sgl.SQLException e) {
sb.append('<P> SQL error: <PRE>" + e + " </PRE> </P>\n");

} finally {
if (detx!= null) dctx.close();
return sb.toString();

%>

Figure 8. The SQL]Query |SP with embedded static SQOL. in scriptlets

The first part of the SQLJQuery JSP defines the HTML code for the page. A request parameter named €npno can
be entered through the form and submitted through the “Ask Oracle” button. If the presence of this parameter is detected in
the request object then the r unQuer y() method is executed with enpno as input. This method is a private routine defined
in the latter part of the JSP itself using the tags <%! ... %> for class-level declarations. A database connection to the

Paper 1097

Developing for the Oracle Internet Platform

scott/tiger accountis first established in this method using the JDBC-OCI driver for the Oracle database. Then, a
static SQL query is performed to fetch the details of an employee based on the input enpno argument. Notice the use of the
compact SELECT. . | NTOstatement to fetch a single record into Java vatiables. This construct is a special feature of SQLJ
and is not directly available in JDBC where query results must always be handled via ResultSets irrespective of whether they
contain one or more rows. If the query succeeds in finding a row then the data is formatted using standard HIML tags and
inserted at the place where the r unQuer y() method was invoked as a Java expression. The database connection is closed in
the fi nal | y block of the t ry statement that performs the SQL query. Output of executing this page for enpno = 7788 is
shown in Figure 9 below.

Employee # 7788 Details:
Hame : SCOTT
Salary 1 3000.0

Date hired : 19-APR-1987

Enter an employee numher:

I Asgk Oracle |

| == | Document: Done

Figure 9. The result of executing a static query through SQL]Query |SP

Performance Notes:

There are two important performance notes about the database access logic in the SQLJQuery JSP:

1) Database connections: Fach time it is invoked with a new search condition, a new database connection is opened
by the runQuer y() method. In practice, a real web environment would have performance optimizations such as
database connection pooling in place. These optimizations are usually applicable in a transparent fashion, e.g., the

cl ose() method on a connection may simply return the connection to a shared pool. Thus the JSP would still have the
same code but underlying layers would cause available connections to be shared effectively among multiple concurrent
users of the database. In Section 4.2 we will look at how resource management can be explicitly programmed in beans
used by a JSP, which may be desirable for some web applications.

2) Query re-parsing: Another apparent source of inefficiency is the re-parsing of the SQL statement if the JSP is
invoked multiple times to perform the same SQL query with different parameters. This situation is not as bad as it seems.
In Oracle 8.1.6 the SQLJ runtime will automatically cache and re-use JDBC statement handles as long as the undetlying
database connection is open. If connection pooling is in place then these statement handles may even be shared across
different users. An alternative to this scheme is to use a session-scoped query bean that explicitly re-uses a prepared
statement handle for the duration of the HT'TP session.

4.2 USING JDBC

SQLJ is intended for static SQL, i.e., when the SQL command is known at program time. In some cases it is required
to formulate the SQL command dynamically as the program executes, for example if a general search condition can be
specified by the user. One must use JDBC in these cases.

Paper 1097

Developing for the Oracle Internet Platform

Let us program a JSP called JDBCQuery that performs a simple dynamic query against the Oracle database. The
code is shown below in Figure 10. The r unQuer y() method first logs on to the scot t schema using password t i ger and
obtains a statement handle for executing the query. The SELECT statement looks up employees and their salaties in the enp
table based on the sear chCondi t i on parameter obtained through the form. Notice that the WHERE clause in the SQL
query is being constructed at runtime depending on user input and it is therefore not static SQL programmable in SQLJ. The
final |y block closes the result set, the underlying statement handle and the database connection upon exit from the try
block of SQL operations. The method f or mat Resul t (Resul t Set) takes the result of a successful query and generates a
bulleted list of employee data.

<%@ page i nport="java.sql.*" %

<HTM.>
<HEAD> <TI TLE> The JDBCQuery JSP </ Tl TLE> </ HEAD>
<BODY BGCOLOR="white">

<% String searchCondition = request . get Par anet er ("cond") ;
if (searchCondition != null) { %>
<H3> Search results for <I> <%= searchCondition %> </I> </H3>
 <%= runQuery(searchCondition) %> <HR>

<%} %>
Enter a search condition:
<FORM METHOD="get">
<INPUT TYPE="text" NAME="cond" SIZE=30>
<INPUT TYPE="submit" VALUE="Ask Oracle");
</FORM>
</BODY>
</HTML>
<%! private String runQuery(String cond) throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rset = null;
try {
Dri ver Manager . regi sterDriver(new oracl e.jdbc.driver. O acl eDriver());
conn = Driver Manager . get Connecti on("j dbc: oracle:oci 8: @,
"scott", "tiger");
stnt = conn.createStatenent();
/'l dynanmi c query
rset = stnt.executeQuery ("SELECT enane, sal FROM scott.enp "+
(cond. equal s("") ? "" : "WHERE " + cond));
return (formatResult(rset));
} catch (SQLException e) {
return ("<P> SQL error: <PRE>" + e + " </PRE> </P>\n");

} finally {
if (rset!=null) rset.close();
if (stnmt!= null) stnt.close();
if (conn!'= null) conn.close();

}

private String formatResult(ResultSet rset) throws SQLEXxception {
StringBuffer sb = new StringBuffer();
if (Irset.next())
sb.append("<P> No matching rows.<P>\n");

else { sb.append("");

do { sb.append("" + rset.getString(1) +

"earns $ " + rset.getint(2) + ".\n");
} while (rset.next());
sb.append('");

return sb.toString();

%>

Paper 1097

Developing for the Oracle Internet Platform

When invoked with no arguments the JDBCQuery JSP simply displays a form for entering a search condition and a
submit button named “Ask Oracle”. After the search condition sal >= 2500 AND sal < 5000 is entered on the
screen and the ‘Ask Oracle’ button is clicked, the output of the JDBCQuery JSP appears as follows:

B The JOBCL ueip J5P - Mot sgaps

fle E& Vs [0 [swencdo Feip
o Bookradc ,_{,L.::n:-.|m: Ficmanied: BOBE D8 (b p o Pooncen s+ L I = 2500 A H [+ ab 200 5000 jll",l"v.h'-ﬂm ﬂ

] al

Search resudis Tor 1 sal == 250 AND sl < S0

= JOMES @arns 5 T075.
* BLAKE rams § 2530
* BOFTT earms S 3000,
= FORD earms § S,

Enter a search ¢ onditlon:

| _Ack Orecla|

- [iecusrart: Do T e I R

Figure 11. Result of doing a dynamic query throngh the [JDBCQuery JSP

4.3 RESOURCE MANAGEMENT IN A WEB APPLICATION

A web application must manage resources acquired during its execution, as such database connections and JDBC
statement handles. In the case of JSPs, there are basically two ways to handle web application resources:

1) Build the management logic into beans called from the JSP. For example, a session-scoped query bean could
acquire a database cursor when it is instantiated and release it when the HTTP session is terminated (either explicitly or
implicitly via timeout). However, in this scheme a bean needs to be aware that it is running in a servlet environment; for
example, the j avax. servl et. http. Ht t pSessi onEvent Li st ener interface would have to be implemented by the
bean so that it can be notified by the servlet execution engine and release the resources upon expiration of the HI'TP
session. Since beans are often designed by third parties as reusable and pluggable components, such explicit knowledge
of the execution environment may not be available or be even desirable within the bean. A workaround in this case
would be to create a proxy “environment-aware” bean that wraps an existing bean to provide the necessary resource
management logic in the HT'TP execution scenatio.

2) Have the JSP code manage the resources itself. JSPs and servlets in the web application know that they will be
running in an HTTP environment, hence they can allocate and de-allocate resources at appropriate times. For example, a
JSP can have explicit logic to associate a resultset with the HT'TP session. For Oracle JSPs we have built an extension that
lets a JSP easily control resource lifetimes using well-known lifecycle events. This is done through special scripting code
that is executed when the application events such as session start and session end occur, along the lines of the

gl obal s. asa facility for Active Server Pages.

Which of the above two methods is employed for resource management is upto the preference of the JSP
programmer and design requirements of the web application.

4.4 USING SESSION-SCOPED JAVABEANS FOR QUERIES

The SQLJQuery and JDBCQuery JSPs have a drawback that Java logic is interspersed with the HITML code. While
this approach may be adequate for simple database operations, in practice the majority of JSP authors are likely to be graphic
designers and scripters rather than full-fledged Java programmers with knowledge of JDBC or SQLJ. Thus, it makes sense to
cleanly separate the logic for generation of dynamic content from its presentation. In accordance with its anticipated usage,
JSPs support convenient creation and usage of modular JavaBeans through the <j sp: usebean> tag described earlier in
Section 2.2.3. We will now illustrate the use of beans to perform SQL queries and manage database resources.

Paper 1097

Developing for the Oracle Internet Platform

If in a web application the same query is re-executed with different parameters then re-parsing the same SQL
statement each time is inefficient. As we have mentioned earlier, underlying cursor caching and connection pooling
mechanisms may help reduce such costs. Let us assume for illustrative purposes that there is no connection pooling, i.e.,
closing a database connection actually terminates it instead of returning it to a shared pool. In Oracle 8.1.6 SQLJ will provide
automatic caching of JDBC prepared statement handles; however, the caching is only applicable until the connection is closed.
Thus, to obtain the benefits of SQLJ statement caching for repeated query execution in a no-pooling environment, the
database connection must be left open for the duration of the HT'TP session. In other words, the lifetime of the
j ava. sql . Prepar edSt at ement representing the parsed SQL query should be the same as that of the HT'TP session.
The <j sp: usebean> tag provides an easy way of doing this type of lifetime scoping using a modular query bean.

Below we define a JavaBean named nybeans. Quer yBean that performs a SQLJ query based on the value of its
enpNumproperty.

package nybeans;

I mport java.sql.*;

i mport sqlj.runtine.ref. DefaultContext;
import oracle.sqglj.runtinme. O acle;

i mport javax.servlet.http.*;

public class QueryBean i npl enents HttpSessi onBi ndi ngLi stener {
String empNum
String result = null;
public void QueryBean() { }

public String getResult() {
if (result '=null) return result; else return runQuery();

}
public void set EnpNun{String enpNum {
result = null; this.enpNum = enpNum

Def aul t Context dc = nul | ;
private String runQuery() {
StringBuffer sb = new StringBuffer();

try {
if (dc == null)
dc = Oracl e. get Connection("jdbc:oracle:oci8: @, "scott", "tiger");
String enane = null; double sal = 0.0; String hireDate = null;

#sql [dc] { SELECT enane, sal, TO CHAR(hiredate, 'DD MON YYYY')
INTO : enane, :sal, :hireDate FROM enp
VWHERE UPPER(enpno) = UPPER(:enpNun) ORDER BY enane };
sb. append(" <BLOCKQUOTE><BI G><PRE>\ n") ;

sb. append(" Nane " + ename + "\n");
sb. append("Sal ary "+ sal + "\n");
sb. append("Date hired : " + hireDate);

sb. append(" </ PRE></ B></ Bl G></ BLOCKQUOTE>") ;
return sb.toString();

} catch (SQLException e) {
return ("SQ Error: " + e.getMessage());

}
// Event listener nmethods for HttpSession binding
public void val ueBound(H t pSessi onBi ndi ngEvent event) {
/1l do nothing -- we know the bean is session-scoped and so al ready bound

publ i c synchroni zed voi d val ueUnbound(Ht t pSessi onBi ndi ngEvent event) {
if (dc !'= null)
try { dc.close();
} catch (SQLException ignored) {}

}
}

There are two important points to note about the logic in this bean:
a) Itis intended to be used in a session scope and uses the instance variable dc to remember the database connection.

b) Itimplements the j avax. servl et. http. H t pSessi onBi ndi ngLi st ener interface.

Paper 1097

Developing for the Oracle Internet Platform

This interface has two methods, val ueBound() and val ueUnbound(), thatare called at HT'TP session startup and

shutdown respectively. These methods can be used to perform the necessary allocation and de-allocation of session-based
resources.

Programming Notes on Session Scoping:

1)

In our case QueryBean will be invoked through a session-scoped <j sp: usebean> tag so that at session startup the bean
will be automatically placed on the list of objects listening for session events. Our JSP (defined below) that uses this bean
calls its get Resul t () method only when the user provides a search parameter in the form. So, we will not connect to
the database in the val ueBound() method in order to minimize the connection interval. Rather, the r unQuer y()
method will establish the connection when invoked for the first time via get Resul t () . Therefore, the val ueBound()
method does nothing (an alternative approach is to place the usebean tag under conditional logic and open the database
connection upon instantiation of the bean). We use the val ueUnbound() method to close the database connection if
it is not null.

A valid question is why do we need to implement the special session listerner methods? Could we instead close the
connection in a f i nal i ze method for the bean that would be called when it is garbage collected? The answer is that the
session listener interface has a much more well-defined behavior compared to the fi nal i ze method. Itis true that at
the end of the HTTP session the reference to a session-scoped bean is no longer available and presumably the bean
becomes gargage. However, garbage collection frequency depends on the memory consumption pattern of the
application. The database connection would be held open until the garbage collector runs and invokes the f i nal i ze
method for the bean. Holding on to a connection for such an unpredictable interval is simply not a good idea. The
session listener interfaces provide well-defined event-based hooks precisely for this purpose.

The UseQueryBean JSP shown in Figure 12 below uses mybeans. Quer yBean to select the details for a particular

employee. The bean is invoked with session scope, and its property is set to the value of the enmpNumfield entered through
the HTML form. Output of executing the JSP appears in Figure 13.

<j sp: useBean i d="queryBean" cl ass="nybeans. QueryBean" scope="session" />
<j sp: set Property nane="queryBean" property="enmpNun />

<HTM_>
<HEAD> <TI TLE> The UseQueryBean JSP </TITLE> </ HEAD>
<BODY BGCOLOR="whi te">

<% String enpNum = request. get Paraneter ("enpNuni') ;
if (empNum!= null) { %
<H3>Enpl oyee # <% enpNum % Details: </H3>
<% queryBean.getResult() %
<HR>
<% } %

<P>Enter an enpl oyee nunber: </ B></ P>
<FORM NMETHOD="get">

<INPUT TYPE="text” NAME="empNum" SIZE=10>
<INPUT TYPE="submit” VALUE="Ask Oracle">
</FORM>

</BODY>
</HTML>

Figure 12. The UseQueryBean JSP uses nybeans. QueryBean to get employee data

Paper 1097

Developing for the Oracle Internet Platform

v Ul nellimegliran J5F - Hedioase

Fie [l Yew pi Lormsdsw Hep
b Jrlnd-m-.l A Llndml'u'n-.'-":lh.r:\.:ﬂl.':..'h-ml'l-ll.-‘.llmwlmulr'\-:lmr\--l\-.'.l.L E'JPW|“M H

Emplayee 5 TR} Detadls:
LS i JRMESR

felary r RE0. 0
Eakm hired : $J-DEC-10HL

Ember an emplaves ponle s

I b Ceacie |

Figure 13. Output of executing the UseQueryBean |SP

5. FORMATTING SQL QUERY RESULTS

A common issue in web applications is visually-pleasing representation of SQL query results. In this section we will
look at three different mechanisms by which query results can be formatted in a JSP.

5.1 GENERATING BAsiCc HTML TABLES

The following class Ht m Tabl e defines a static method f or mat (Resul t Set rs) that accepts a JDBC resultset
parameter and uses the associated metadata to generate an HIML table with column headers and data rows. This example is
based on the corresponding sample in the Java Servlet Programming book [4]. The JDBC Resul t Set Met aDat a object
contains the names of SQL columns selected by the query, and these names are used as column headers. A programmer can
easily get a desired column header by using the AS clause to alias a SQL column or expression in a JDBC or SQLJ query.
Once a query has been successfully executed, the f or mat method can be invoked from a JavaBean or directly from a JSP
scriptlet. Figure 14 displays the output of executing this method on a SQLJ iterator for employee data. The JSP is omitted
for brevity.

/********** Flle th«‘TabI eJaVa **********/
i mport java.sql.*;

public class H ml Tabl e {

public static String fornmat(ResultSet rs) throws SQ.Exception {

StringBuffer sb = new StringBuffer();
if (rs==null) || !'rs.next()) sb.append("<P> No matching rows.<P>\n");
el se {

sb. append(" <TABLE BORDER>\ n");

Resul t Set Met aData nd = rs. get MetaDat a() ;

int nunCol s = nd. get Col umCount () ;

for (int i=1; i<= nunCols; i++) {

sb. append(" <TH><I >" + nd. get Col utmLabel (i) + "</1></TH>");

do { sh.append("<TR>\n");
for (int i =1; i <= nunCols; i++) {
sb. append(" <TD>");
Obj ect obj = rs.getCbject(i);
if (obj '= null) sh.append(obj.toString());
sb. append(" </ TD>");

}

sb. append("</ TR>");
} while (rs.next());
sb. append(" </ TABLE>") ;

return sb.toString();

}
}

Paper 1097

Developing for the Oracle Internet Platform

[I& Y o [Lonmscds [1sp

J-Bwhlh e I T T L i e e —— g -.':-'---ILI 'I"""""" Pladaras n
« + 3 N a2 o 3 & @A

Bk Febed boss Seech Feocam PFel Socue

e
Seardh Heailiy Tor - comene Ble 572"

I

Peoww Fopivpee Id Sakory | Dader o
EMITH 7345 E T-DEC-1980
LT [HIEL LAPR-19EY

Enter s cesrvh corstii o

| sk Dracte |

ol =L Dcamsari: Darw it = T O Y

| I |

Figure 14. Output of formatting using the HimlTable.format(ResultSet) method

5.2 USING THE ORACLE XML-SQL UTILITY

Oracle Technology Network (htp:/ [technet.us.oracle.com) provides several freely downloadable utilities for XML, and
XML-SQL is one of them. This is a very useful package that can convert a JDBC resultset into formatted XML output.
Conversely, it can also insert input XML data into a canonical definition of SQL tables. In the example below we illustrate
the XML-generation capability of this tool. As you will notice in the file XMLQueryBean.sqlj shown below, the bean executes
a parameterized SQL query against the enp table and fetches the results into a SQLJ iterator called enps. The JDBC resultset
underlying this iterator is extracted through the enps. get Resul t Set () method call and used to construct an instance of
the class oracl e. xm . sqgl . query. Oracl eXM_.Query. Subsequently, a call to the method get XMLSt ri ng() of this
instance generates XML output that is in-lined in the returned HITML page (Figure 15). The Internet Explorer 5.0 browser is
capable of displaying such XML islands embedded in HI'ML pages. The output can be formatted using stylesheets before
displaying to the user.

Notice that the SQL query in the #sql statement uses SQL column aliases to rename fetched columns. By default,
these names are used by XML-SQL as tags for the generated XML elements. There are facilities to provide explicit tags and
stylesheets, but exploring this functionality is outside the scope of this paper.

/********** Flle XM_QJeryBeanSCﬂj **********/
package mybeans;

I mport java.sql.*;

i mport sqlj.runtine.ref. DefaultContext;

import oracle.sqglj.runtime. O acle;

i mport oracle.xm.sql.query.*;

public class XM.QueryBean {
String dept Num
String result = null;
public void XM.QueryBean() { }
public String getResult() {
if (result I'=null) return result; else return runXMQuery();

}

public void setDept Nun(String dept Nun) {
result = null;
t hi s. dept Num = dept Num

}

Def aul t Cont ext dc = null;

private String runXM.Query()
#sql iterator enplter (Str
enplter enps = null;

{
ng Name, int Enpl oyeeNum Date HireDate);

try {
if (dc == null) dc = Oracl e.get Connection("jdbc:oracle:oci8: @, "scott", "tiger");

Paper 1097

Developing for the Oracle Internet Platform

#sql [dc] enmps = { SELECT ename as "Nane", enmpno as "Enpl oyeeNuni,
hi redate as "HireDate"
FROM enp WHERE dept no = :dept Num ORDER BY enane };

try {
Oracl eXM_Query xq = new Oracl eXM_.Query(dc. get Connection(), enps.getResultSet());
return ("<XM>\n" + xqg.get XMLString() + "</ XM.>\n");
} catch (Exception e) {
return ("XM. conversion error: " + e.getMessage());

}
} catch (SQLException e) {
return ("SQ. Error: " + e.getMessage());
} finally {
try {
if (enmps !'= null) enps.close();
} catch (SQ.Exception ignored) {}

......... // methods that implement HttpSessionBindingListener interface, as in Querybean.sqlj

ource of: http://dlsun669:8085/examples/julie/UseXmlQueryBean.jsp?deptNum=10 - Netscape

Figure 15. HIML page with an embedded XML island generated nsing SQLJ and XMIL-SQL

Paper 1097

Developing for the Oracle Internet Platform

5.3 USING THE XSQL SERVLET

The XSQL utility lets you embed SQL queries inline within an XML page using a dynamic <quer y> tag. A nice
feature is that it has both a command-line as well as a servlet interface, and the latter can be invoked from within a JSP using
the standard <j sp: i ncl ude> tag. Below is an example that illustrates how to do this. But first, consider the small sample
of an XSQL page named emp.xsql as shown in Figure 16 below:

<?xm version="1.0"7?>

<?xml - styl esheet type="text/xsl" href="rowcol.xsl"?>

<query connection="denm" sort="ENAME" null-indicator="yes" >
SELECT * FROM EMP
VWHERE ENAME LIKE ' {@i nd} %
ORDER BY {@ort}

</ query>

Figure 16, An XSQOL page with an embedded SQL query

An XSQL page conforms to standard XML syntax and can specify stylesheets for post-processing the generated
output. It uses the special <quer y> tag to perform a SQL query. The query tag supports several attributes including, among
others, the database connection, null-handling, plus search and sort parameters for the query. In our case we run the query
against the enp table using the database connection named denp. The parameters for this connection are specified separately
in a configuration file (not shown here) that also follows XML syntax. After the query result is formatted into XML the
stylesheet is applied. For our example the stylesheet being used is rowcol.xsl, which looks as follows:

<?xm version="1.0"?>
<xsl :styl esheet xm ns:xsl="http://wwm. w3. or g/ XSL/ Tr ansf ornf 1. 0"
/

xm ns="http://ww. w3. org/ TR REC- ht ml 40" result-ns="" indent="yes">
<xsl:tenplate match="/">
<htm >
<head> <styl e>
. page {font-fam |ly: Tahoma, sans-serif; background-col or: white}

.roweven {background-color: white;} .rowodd {background-color: pink;}
</ styl e> </ head>
<body cl ass="page"> <center>
<tabl e border="1" cell paddi ng="4">
<xsl : for-each sel ect =" RONBET/ RO 1] " >
<tr> <xsl:for-each select="*">
<t h>
<xsl:attribute name="cl ass">
<xsl : choose>
<xsl :when test="position() nod 2
<xsl :when test="position() nod 2
</ xsl : choose>
</xsl:attribute>
<xsl : val ue- of sel ect="name(.)"/>
</th>
</xsl:for-each> </tr>
</ xsl: for-each>
<xsl : for-each sel ect =" RONSET/ ROV >
<tr> <xsl:attribute name="cl ass">
<xsl : choose>
<xsl : when test="position() nod
<xsl : when test="position() nod
</ xsl : choose>
</xsl:attribute>
<xsl :for-each select="*">
<td> <xsl:attribute nane="cl ass">
<xsl : choose>
<xsl : when test="position() nod
<xsl :when test="position() nod 2
</ xsl : choose>
</xsl:attribute>

1" >col odd</ xsl : when>
0" >col even</ xsl : when>

1" >r owodd</ xsl : when>
0" >r oneven</ xsl : when>

NN

1" >col odd</ xsl : when>
0" >col even</ xsl : when>

<xsl : val ue-of select="."/>
</td>
</ xsl: for-each>

</[tr>
</ xsl : for-each>
</tabl e> </center> </ body>
</htm >

Paper 1097

Developing for the Oracle Internet Platform

</ xsl:tenpl at e>
</ xsl : styl esheet >

Employees whose names match the f i nd parameter are selected by the query and ordered alphabetically by their
name. An important point to note is that the Sort parameter is specified as an attribute of the query tag but f i nd is not
defined inside the XSQL page. This means that the search condition will be picked up from the environment that the XSQL
page is invoked from, in our case from a JSP. The dynamic contents of this page can be included in a JSP as follows:

<HTM._>

<HEAD><TI TLE> The | ncl udeXsql JSP </ Tl TLE></ HEAD>
<BODY BGCOLOR="white">

<%@ page buffer="5" autoFl ush="fal se" %

<P>I ncl udi ng dynanmi ¢ XM. content from an XSQL page: </ P>
<pP>

<j sp:include page="enp. xsqgl" flush="true" />

</ P><HR>

<P>Ent er any characters in enpl oyee nane: </ B></ P>
<FORM METHOD=get >

<I NPUT TYPE=t ext NAME="fi nd" SIZE=10>

<I NPUT TYPE=submit VALUE="Ask Oracle">

</ FORV>

</ BODY>

</ HTML>

Figure 17. Including the dynamic contents of an XSQL. page in a |SP

Notice that the JSP uses a form with an input field named f i nd, which is no accident. It is intended to match the
find parameter in our emp.xsql page which is invoked from the JSP via the standard <j sp: i ncl ude> tag. Query execution
in the emp.xsql page is done using JDBC, the resultset formatted into XML using the XML-SQL utility described in the
previous section, and then the given stylesheet is applied before the result is returned to the JSP for inclusion in the HTTP
response. Figure 18 below shows the output for a sample search for employee names starting with the letter A.

- The lerhaledeg 5P - Hsiesapne

Fle Ed Yiew Go [owwwsoss Hel

J-H.rﬁl & lunm|--u.--' Snrasd BRL rearnder b frah e sy pp i ll',}" et BT E T ﬂ

d & 3 3 2 @ 4 &£ U

Hadk Hexrs pach liscas P Sarimiy

|®

Inekiding dymamie XFL csnrest frsei as XEOQL pajgi-

EMPNO | ENAME JE Mk HIREDATE SAL | COMM DEPTHO
TEH ADAME |CLERK TME | |SET-05-23 DOOMI0O0 1109 m

W ALLEN |SALESMAH Té9E | 1981-02-20 DOORADO | 160D | 30]

Enter amy charscbers in empleyee same

[[k O | -

Pl [T R D e N[R

Figure18. Sample output from the IncludeXsqgl |SP

6. JSP PRODUCT AVAILABILITY AND TECHNOLOGY PREVIEW

Oracle has developed its own JSP runtime that supports the complete JSP 1.0 specification as well as Oracle defined

extensions.

These extensions include:

Paper 1097

Developing for the Oracle Internet Platform

* Scriptable life-cycle events using ASP-style globals.jsa file in the web application

* A templating language called JSP Markup Language (JML) to augment scripting in Java
* SQLJ integration in JSP scriptlets

* The ability to transform all or part of the result of a JSP using XSL.

Oracle supports the execution of servlets and JSPs in several different server environments. These environments
include Oracle Application Server Release 4.0.8.1, and upcoming releases of Oracle WebDB (3.0), Oracle Lite, and Oracle
JServer. The Oracle JSP translator also runs on any standard servlet runner, most notably Apache. Development of JSP and
servlet based web applications is supported in Oracle JDeveloper 3.0, including the ability to debug JSP by setting breakpoints

in its source.

The Oracle JSP translator is freely downloadable off the Oracle Technology Network site (hp:/ / technet.oracle.com).

The site also contains information about the use of the above extensions.

6.1 ORACLE'S JSP PLANS AND EXTENSIONS
The following is an outline of JSP features and functionality that are being considered for upcoming Oracle releases:

* Supporting JSP 1.1: The translator currently conforms to the JSP 1.0 specification that is based on the Servlet 2.1 APL
In future we will support the JSP 1.1 specification built on the Servlet 2.2 specification, which are both part of the Java2
Enterprise Edition (J2EE). The major enhancement in JSP 1.1 is the definition of a portable tag extension mechanism.
This will enable 3 parties and application developers to build JSP tags (like our JML tags) and know they will work on all
JSP runtimes.

* Improved Oracle Database access: Though we have shown in this paper a variety of ways to access Oracle data from a
JSP, we are considering building a collection of data access beans that are suited for use within a JSP. In particular, these
beans would be the basis for extending the JML tags to provide database access.

* Improved XML/XSL integration: We expect to add additional capabilities to extend and simplify the use of XMIL/XSL
in a JSP environment.

6.2 RUNNING JSPS INSIDE THE ORACLE DATABASE

Java being a strongly-type and memory-safe language is ideal for programming server applications. The Oracle 8;
database embeds a Java Virtual Machine to allow the storage and execution of Java code inside the database server. This Java
Virtual Machine, known as the JServer, is different from the one in JDK and is specially optimized for the Oracle database. It
runs in the same address space as the database process, thereby providing fast but safe access to SQL data. As we have seen
in this paper, Oracle provides both JDBC and SQLJ standards for accessing object-relational data in SQL tables. Distributed
programming schemes such as Enterprise Java Beans and CORBA objects are also supported by JServer. Different sessions
are handled in distinct virual Java execution environments, providing isolation and increased scalability. For example,
individual sessions have their own garbage collector and do not affect the performance of other concurrent Java sessions as in
the case of the JDK. The JServer has been demonstrated to be highly scalable, effectively handling thousands of clients
without significant deterioration in performance [10].

In an upcoming release the JServer will also host an embedded web server component. This will allow HI'TP-based
communication with the Oracle database and support the direct execution of servlets and JSPs inside the database, closest to
SQL data. The web server namespace will be modeled using the JNDI (Java Naming and Directory Interface) specification
from Sun Microsystems. Oracle’s JSP translator will be integrated with this web server. We plan to generate servlet code that
is specially optimized for the JServer execution scenario, taking advantage of the JServer performance features such as shared
read-only resources and hot-loaded classes.

Paper 1097

Developing for the Oracle Internet Platform

7. SUMMARY

To summarize, this paper examines database access issues for JavaServer Pages that generate dynamic content. We
tirst provide an overview of the capabilities of the JSP framework. JSPs support Java-based scripting to allow generation of
dynamic HTML content. Using special JSP tags, Java scriptlets may be interspersed with static HTML in the same soutce file.
This file 1s translated into a servlet by the JSP translator, and can be executed on any standards-compliant servlet runner. The
compact JSP framework also integrates support for JavaBeans, which are reusable entities of component-based programming.
JavaBeans can be conveniently invoked from a JSP via the <j sp: usebean> tag, and their lifetimes can be scoped to be
associated with the JSP page, the HTTP request, HT'TP session, or the web application. In Section 2 we illustrated these JSP
features using detailed code samples.

The latter part of the paper deals specifically with JSPs that perform SQL operations to generate their dynamic
content. Access to Oracle is shown using both SQLJ and JDBC in JSP scriptlets. JavaBeans that modularize SQL operations
are also illustrated. We discuss the important issue of database resource management, such as closing database connections
and re-using JDBC statement handles. Formatting of SQL query results is a significant topic for web application designers.

In this paper we demonstrated three different ways to handle the presentation of SQL query results: (1) directly processing the
JDBC resultset to generate HIML tables, (2) using the Oracle XML-SQL utility to generate embedded XML islands, and
finally (3) using the XSQL servlet and its special <quer y> tag to execute and format via XSL the result of a SQL query. In
conclusion, we provide the product status of Oracle JSPs and a brief technology preview for upcoming Oracle releases.

8. ACKNOWLEDGMENTS

I am very grateful to the many people at Oracle who have shared their ideas and insights. In particular, I would like
to thank Mike Freedman for in-depth technical discussions on the various issues addressed in this paper. Thanks are also due
to members of the Webserver team in the Java Platform Group — it is indeed a pleasure and a privilege to be working with
them. I specially wish to thank Rakesh Dhoopar for submitting the paper abstract, Ekkehard Rohwedder for clarifications
and discussions on SQLJ issues, Steven Muench for helping to get the XSQL servlet example working with JSPs, and Gael
Stevens for her help in reviewing the paper. The code sample for XSQL and the XSQL stylesheet are adapted from the
demos written by Steve Muench and debugged with expert help from Mike Freedman.

9. REFERENCES

(1] JavaServer Pages 1.0 Specification, Sun Microsystems

(2] Java Developer’s Guide, Oracle 8.1.5

[3] JDBC Devloper’s Guide and Reference, Oracle 8.1.5

(4] JAVA Serviet Programming, Hunter and Crawford, O’Reilly
[5] SOLJ Developer’s Guide and Reference, Oracle 8.1.5

(6] Developing JavaBeans, Robert Englander, O’Reilly

(7] Oracle XMI-SQL. utility, http:/ / technet.oracle.com

[8] Oracle XSQL servlet, http:/ /technet.oracle.com

(9] XML and XSL documentation, http:/ /www.w3c.otg

—

10] [Server Performance and Scalability, Oracle technical white papet, http://www.oracle.com/java

Paper 1097

